The Alberta High School Mathematics Competition

Part II, February 5th , 2020

Problem 1

Let $P(x)$ be a polynomial with integer coefficients. Show that if $P\left(\frac{1}{3}\right)$ is an even integer then $P(3)$ will also be an even integer.
Solution: If $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, and $P\left(\frac{1}{3}\right)=M$ where M is even, then

$$
a_{n}\left(\frac{1}{3}\right)^{n}+a_{n-1}\left(\frac{1}{3}\right)^{n-1}+\cdots+a_{1} \frac{1}{3}+a_{0}=M
$$

or equivalently

$$
a_{n}+a_{n-1} \cdot 3+\cdots+a_{1} \cdot 3^{n-1}+a_{0} \cdot 3^{n}=M \cdot 3^{n}
$$

Thus,

$$
\begin{aligned}
P(3)-3^{n} M & =a_{n} \cdot 3^{n}+a_{n-1} \cdot 3^{n-1}+\cdots+a_{1} \cdot 3+a_{0}-\left(a_{n}+a_{n-1} \cdot 3+\cdots+a_{1} \cdot 3^{n-1}+a_{0} \cdot 3^{n}\right) \\
& =a_{n} \cdot\left(3^{n}-1\right)+a_{n-1} \cdot\left(3^{n-1}-3\right)+\cdots+a_{1} \cdot\left(3-3^{n-1}\right)+a_{0} \cdot\left(1-3^{n}\right)
\end{aligned}
$$

Since the $3^{n} M$ and $3^{n}-1,3^{n-1}-3, \ldots, 1-3^{n}$ are all even numbers, one obtains that $P(3)$ is an even number.
Alternative Solution: Since $3 \equiv 1(\bmod 2)$ then $P(3) \equiv a_{0}+a_{1}+\cdots+a_{n} \equiv M 3^{n} \equiv M(\bmod 2)$ and hence $P(3)$ is even.

Problem 2

Find all functions $f(x)=\frac{47}{a x+b}$, where a and b are integers and $a>0$, so that $f(4)$ and $f(7)$ are both integers.
Solution: Since $f(4)=\frac{47}{4 a+b}$ and $f(7)=\frac{47}{7 a+b}$ are both integers, and 47 is prime, $4 a+b$ and $7 a+b$ must each be equal to one of $\pm 1, \pm 47$. So by subtraction, $3 a$ (being positive) must be one of $2,46,48$ or 94 . The only possibility for integer a is $3 a=48$, which arises from either $7 a+b=47,4 a+b=-1$ or $7 a+b=1,4 a+b=-47$. With $a=16$, the former gives $b=-65$ and the latter gives $b=-111$. So the possible functions are

$$
f(x)=\frac{47}{16 x-65} \quad \text { and } \quad f(x)=\frac{47}{16 x-111} .
$$

Problem 3

Consider all the subsets of $\{5,6,7, \ldots, 15\}$ having at least two elements. How many of these subsets have the property that the sum of the smallest and the largest element in the subset is 20 ?

Solution:

Let A_{k} be a non-empty subset of $\{5,6,7, \ldots, 15\}$ having the required property, and with smallest element k, hence $20-k$ is the largest element of A_{k}. For the remaining elements in A_{k} it is possible to choose any (or none) of $k+1, k+2, \ldots, 19-k$. Therefore, the number of such subsets A_{k} is $2^{19-2 k}$. On the other hand since $20-k>k$ and $k \geq 5$, i.e., $5 \leq k \leq 9$, the total number of requested subsets is

$$
2^{19-2 \cdot 5}+2^{19-2 \cdot 6}+2^{19-2 \cdot 7}+2^{19-2 \cdot 8}+2^{19-2 \cdot 9}=2(1+4+16+64+256)=682 .
$$

Problem 4

$\triangle A B C$ has right angle at A. Point D lies on $A B$, between A and B, such that $3 \angle A C D=\angle A C B$ and $B C=2 B D$. Find the ratio $\frac{D B}{D A}$.

Solution:

Let $D A=m, D B=n$, and $\angle A C D=\alpha$. Then $B C=2 n$, and $\angle D C B=2 \alpha$. If the Sine Law is applied in $\triangle D C B$ then

$$
\frac{n}{\sin (2 \alpha)}=\frac{2 n}{\sin (90+\alpha)} \Longleftrightarrow \frac{n}{2 \sin (\alpha) \cos (\alpha)}=\frac{2 n}{\cos (\alpha)} \Longleftrightarrow \sin (\alpha)=\frac{1}{4}
$$

and since $C D=\frac{m}{\sin \alpha}$ one obtains $C D=4 m$. Now
$A C^{2}=(4 m)^{2}-m^{2}=(2 n)^{2}-(m+n)^{2} \Rightarrow 3 n^{2}-2 m n-16 m^{2}=0 \Longleftrightarrow(3 n-8 m)(n+2 m)=0$
and hence $\frac{D B}{D A}=\frac{n}{m}=\frac{8}{3}$.

Alternative Solution: Take D^{\prime} the symmetrical of D with respect to $A C$, then $D^{\prime} A=m$ and $C D$ is the bisector of $\angle D^{\prime} C B$. Also, $\triangle D^{\prime} C D$ is isosceles ($C A$ is the bisector and the altitude) hence $C D^{\prime}=C D$. In $\triangle D^{\prime} C B$ by using the Bisector Theorem one obtains

$$
\frac{C D^{\prime}}{C B}=\frac{D D^{\prime}}{D B} \Longleftrightarrow \frac{C D^{\prime}}{2 n}=\frac{2 m}{n} \Longleftrightarrow C D^{\prime}=4 m
$$

and hence $C D=C D^{\prime}=4 m$. The solution continues as above.

Problem 5

Let $b_{0}<c_{0}$ be real numbers so that the polynomial $f_{0}(x)=x^{2}+b_{0} x+c_{0}$ has two real roots $b_{1}<c_{1}$ (that is, $f_{0}\left(b_{1}\right)=$ $f_{0}\left(c_{1}\right)=0$) and let $f_{1}(x)=x^{2}+b_{1} x+c_{1}$. If $f_{1}(x)$ has two real roots $b_{2}<c_{2}$, a new quadratic polynomial $f_{2}(x)=x^{2}+$ $b_{2} x+c_{2}$ is constructed. The process is continued until the quadratic polynomial $f_{n-1}(x)=x^{2}+b_{n-1} x+c_{n-1}, b_{n-1}<$ c_{n-1} has two real roots $b_{n}<c_{n}$, but $f_{n}(x)=x^{2}+b_{n} x+c_{n}, n \geq 1$ has no real roots.
(a) Show that $n \leq 3$.
(b) Show that $n=3$ is a possible value.

Solution:

Notice that if x_{1}, x_{2} are the solutions of the quadratic equation $x^{2}+S x+P=0$ then $x_{1}+x_{2}=-S$ and $x_{1} x_{2}=P$; this known fact, which can be immediately justified by using the identity $x^{2}+S x+P=\left(x-x_{1}\right)\left(x-x_{2}\right)=x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}$, will systematically be used in the solution of this problem.
(a) Note that one of the inequalities $b_{1} \leq 0 \leq c_{1}, b_{1}<c_{1}<0,0<b_{1}<c_{1}$ must hold. We prove the following statements:
(A) If $b_{1} \leq 0 \leq c_{1}$ then $f_{1}(x)$ has no real roots(hence $n=1$).

Proof of the statement ($\mathbf{(}$):
Since $b_{0}=-\left(b_{1}+c_{1}\right), c_{0}=b_{1} c_{1}$ and $b_{0}<c_{0}$ one obtains $b_{1}+c_{1}+b_{1} c_{1}>0$ and thus $0 \geq b_{1}>\frac{-c_{1}}{1+c_{1}}$. Hence

$$
\Delta_{1}=b_{1}^{2}-4 c_{1}<\frac{c_{1}^{2}}{\left(c_{1}+1\right)^{2}}-4 c_{1}=-c_{1} \frac{4 c_{1}^{2}+7 c_{1}+4}{\left(c_{1}+1\right)^{2}} \leq 0,
$$

that is $\Delta_{1}<0$, and therefore $f_{1}(x)=x^{2}+b_{1} x+c_{1}$ has no real roots.
(B) If $b_{1}<c_{1}<0$ and $f_{1}(x)$ has real roots $b_{2}<c_{2}$ then $f_{2}(x)=x^{2}+b_{2} x+c_{2}$ has no real roots (hence $n=2$).

Proof of the statement (\mathbf{B}):
Since $b_{2} c_{2}=c_{1}<0$ we get $b_{2}<0<c_{2}$, consequently, following the statement (A) and its proof (by replacing the subscript 0 with 1 and 1 with 2) one obtains that $f_{2}(x)=x^{2}+b_{2} x+c_{2}$ has no real roots.
(C) If $0<b_{1}<c_{1}$ and $f_{1}(x), f_{2}(x)$ have real roots $b_{2}<c_{2}$ and respectively $b_{3}<c_{3}$, then $f_{3}(x)=x^{2}+b_{3} x+c_{3}$ has no real roots (hence $n=3$).

Proof of the statement (\mathbf{C}) :
From $b_{2}+c_{2}=-b_{1}<0$ and $b_{2} c_{2}=c_{1}>0$ we get $b_{2}<c_{2}<0$. Now, according to (B) (by replacing the subscript 1 with 2 and 2 with 3), one obtains that $f_{3}(x)=x^{2}+b_{3} x+c_{3}$ has no real roots.
Thus $n \leq 3$ in all three cases.
(b) The maximum value of n may be obtained if we can find two real numbers b_{1}, c_{1} so that the conditions in the statement (C) are verified, i.e., $0<b_{1}<c_{1}$ and both polynomials $f_{1}(x), f_{2}(x)$ have two real roots $b_{2}<c_{2}$ and respectively $b_{3}<c_{3}$. We will find all these possibilities. Notice that for a selection of b_{1}, c_{1} as above, we have $b_{0}=-\left(b_{1}+c_{1}\right)$ and $c_{0}=b_{1} c_{1}$.

Put $b_{1}=a, c_{1}=a+h$, such that $a, h>0$. The quadratic polynomial $f_{1}(x)$ has distinct real roots if and only if

$$
\Delta_{1}=b_{1}^{2}-4 c_{1}>0 \Longleftrightarrow a^{2}-4 a-4 h>0 \Longleftrightarrow(a-2)^{2}>4(h+1) \Longleftrightarrow a>2+2 \sqrt{1+h}
$$

while $f_{2}(x)$ has real distinct roots if and only if $\Delta_{2}=b_{2}^{2}-4 c_{2}>0$. Since $b_{2}<c_{2}$ are the roots of $f_{1}(x)=x^{2}+b_{1} x+c_{1}$, we know that $b_{2}=\frac{-b_{1}-\sqrt{b_{1}^{2}-4 c_{1}}}{2}=\frac{-a-\sqrt{\Delta_{1}}}{2}$ and $c_{2}=\frac{-a+\sqrt{\Delta_{1}}}{2}$ and hence

$$
\Delta_{2}=b_{2}^{2}-4 c_{2}>0 \Longleftrightarrow\left(\frac{-a-\sqrt{\Delta_{1}}}{2}\right)^{2}>2\left(-a+\sqrt{\Delta_{1}}\right) \Longleftrightarrow a^{2}+2(a-4) \sqrt{\Delta_{1}}+\Delta_{1}+8 a>0 .
$$

The last inequality in the above sequence of inequalities is always valid if $a>2+2 \sqrt{1+h}$. There are infinitely many ways to choose h and a so that $h>0$ and $a>2+2 \sqrt{1+h}$. Therefore, we conclude that there are infinitely many possibilities to choose b_{1} and c_{1} such that the conditions required in (C) are verified, hence the maximum value $n=3$ is attainable.

