The Alberta High School Mathematics Competition Part II, February 5th , 2020

Problem 1

Let P(x) be a polynomial with integer coefficients. Show that if $P(\frac{1}{3})$ is an even integer then P(3) will also be an even integer.

Problem 2

Find all functions $f(x) = \frac{47}{ax+b}$, where *a* and *b* are integers and *a* > 0, so that f(4) and f(7) are both integers.

Problem 3

Consider all the subsets of {5, 6, 7, ..., 15} having at least two elements. How many of these subsets have the property that the sum of the smallest and the largest element in the subset is 20?

Problem 4

 $\triangle ABC$ has right angle at *A*. Point *D* lies on *AB*, between *A* and *B*, such that $3\angle ACD = \angle ACB$ and BC = 2BD. Find the ratio $\frac{DB}{DA}$.

Problem 5

Let $b_0 < c_0$ be real numbers so that the polynomial $f_0(x) = x^2 + b_0 x + c_0$ has two real roots $b_1 < c_1$ (that is, $f_0(b_1) = f_0(c_1) = 0$) and let $f_1(x) = x^2 + b_1 x + c_1$. If $f_1(x)$ has two real roots $b_2 < c_2$, a new quadratic polynomial $f_2(x) = x^2 + b_2 x + c_2$ is constructed. The process is continued until the quadratic polynomial $f_{n-1}(x) = x^2 + b_{n-1}x + c_{n-1}$, $b_{n-1} < c_{n-1}$ has two real roots $b_n < c_n$, but $f_n(x) = x^2 + b_n x + c_n$, $n \ge 1$ has no real roots.

(a) Show that $n \leq 3$.

(b) Show that n = 3 is a possible value.