# The Alberta High School Mathematics Competition <br> Part II, February 5th , 2020 

Problem 1
Let $P(x)$ be a polynomial with integer coefficients. Show that if $P\left(\frac{1}{3}\right)$ is an even integer then $P(3)$ will also be an even integer.

## Problem 2

Find all functions $f(x)=\frac{47}{a x+b}$, where $a$ and $b$ are integers and $a>0$, so that $f(4)$ and $f(7)$ are both integers.

## Problem 3

Consider all the subsets of $\{5,6,7, \ldots, 15\}$ having at least two elements. How many of these subsets have the property that the sum of the smallest and the largest element in the subset is 20 ?

## Problem 4

$\triangle A B C$ has right angle at $A$. Point $D$ lies on $A B$, between $A$ and $B$, such that $3 \angle A C D=\angle A C B$ and $B C=2 B D$. Find the ratio $\frac{D B}{D A}$.

## Problem 5

Let $b_{0}<c_{0}$ be real numbers so that the polynomial $f_{0}(x)=x^{2}+b_{0} x+c_{0}$ has two real roots $b_{1}<c_{1}$ (that is, $f_{0}\left(b_{1}\right)=$ $f_{0}\left(c_{1}\right)=0$ ) and let $f_{1}(x)=x^{2}+b_{1} x+c_{1}$. If $f_{1}(x)$ has two real roots $b_{2}<c_{2}$, a new quadratic polynomial $f_{2}(x)=x^{2}+$ $b_{2} x+c_{2}$ is constructed. The process is continued until the quadratic polynomial $f_{n-1}(x)=x^{2}+b_{n-1} x+c_{n-1}, b_{n-1}<$ $c_{n-1}$ has two real roots $b_{n}<c_{n}$, but $f_{n}(x)=x^{2}+b_{n} x+c_{n}, n \geq 1$ has no real roots.
(a) Show that $n \leq 3$.
(b) Show that $n=3$ is a possible value.

